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Abstract We review recent theoretical and experimental ef-
forts toward developing an all-optical switch based on trans-
verse optical patterns. Transverse optical patterns are formed
when counterpropagating laser beams interact with a nonlinear
medium. A perturbation, in the form of a weak switch beam
injected into the nonlinear medium, controls the orientation of
the generated patterns. Each state of the pattern orientation is
associated with a state of the switch. That is, information is
stored in the orientation state. A realization of this switch using
a warm rubidium vapor shows that it can be actuated by as few
as 600±40 photons with a response time of 5µs. Models of
nonlinear optical interactions in semiconductor quantum wells
and microresonators suggest these systems are also suitable for
use as fast all-optical switches using this same conceptualde-
sign, albeit at higher switching powers.

A pair of counterpropagating beams induce an instability that
generates transverse optical patterns. (A) Two spots form the
unperturbed far-field pattern. (B) A weak beam incident at an
angle to the pump beam axis causes the generated pattern to
rotate. From Ref. [1]
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1. Introduction

In the past decade, the rapid bandwidth increase in com-
munication networks has been enabled by advances in
opto-electronic technology. However, bandwidth improve-
ments cannot continue indefinitely as opto-electronic de-
vices face thermal dissipation limits that are fundamen-
tal to processing information in the electronic domain [2].
Photonics offers a wide range of novel information pro-
cessing technologies with the potential for much greater
bandwidth. In particular, devices that process information

in the optical domain can operate on parallel channels,
with high bandwidth, and with markedly higher informa-
tion density.

To process information all-optically, beams of light
must interact with one another, which can only occur in
nonlinear media. Optical nonlinearities are typically weak,
requiring high intensities in order to generate significant
effects. A current goal in the field of nonlinear optics is
to reduce the power required for nonlinear interactions.
One application of nonlinear optics is the development
of efficient telecommunications devices where strong non-
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linearities reduce device power requirements. In addition,
there is a need to operate devices at the ultimate, single-
photon level. Few-photon or ultra-low-light nonlinear op-
tics has many potential applications in quantum informa-
tion science [3]. Several recent experiments in the photon-
ics field have demonstrated ultra-low-light nonlinear opti-
cal effects using various techniques including high-finesse
cavities [4, 5], plasmonic nanostructures [6], and quantum-
interference effects such as electromagnetically-induced
transparency [7–10].

These approaches each achieve remarkable sensitivity;
however, as we explain below, they do not necessarily sat-
isfy the requirements for use as a scalable all-optical net-
work element. Another approach, one that is the subject of
this review, is based on the control of transverse patterns
generated by nonlinear optical interactions. This pattern-
based approach achieves a level of sensitivity that is com-
parable to other methods in addition to satisfying the re-
quirements of scalability.

This review describes recent progress in the field of
nonlinear optics that has demonstrated all-optical switches
that are capable of controlling one beam of light with
another. These devices exploit the inherent sensitivity of
pattern-forming instabilities to weak perturbations and are
based on transverse optical patterns that change orienta-
tion in the presence of a weak control beam, orswitch
beam. This article is designed as a review, but also con-
tains relevant results from our recent work. The review is
arranged as follows. The next section introduces the con-
cepts of nonlinear pattern formation and provides context
for the application of pattern-forming systems to prob-
lems in optical switching. Section 3 describes various ap-
proaches to all-optical switching, and introduces common
metrics for comparing different devices. Section 4 sum-
marizes recent experimental results using an all-optical
switch based on transverse optical patterns that are formed
in a counterpropagating-beam system. Section 5 presents
numerical results obtained by simulating the interaction
of gaussian beams counterpropagating through a medium
that exhibits Kerr-like nonlinearity. In Sec. 6, we de-
scribe recent results based on simulations of a related sys-
tem where beams counterpropagate in a semiconductor
medium which exhibits excitonic nonlinearities. Finally,a
discussion of future directions is given in Sec. 7.

2. Pattern Formation

The emergence of regular structure from natural processes
has been observed throughout history. Found in nearly ev-
ery field of science, patterns are one of the most recog-
nizable signatures of a nonlinear dynamical system. The
mathematical tools developed in the field of dynamics have
been used successfully to describe a wide range of pattern
forming systems in biology, chemistry, and computer sci-
ence [11, 12].

The quantitative description of pattern formation re-
quires a study of the system dynamics and their stability

relative to perturbations. For spatially extended systems,
the stability of the Fourier modes of the system are of inter-
est. Hence, if infinitesimal perturbations applied to a spe-
cific mode grow as the system evolves, that mode can give
rise to an instability. Instabilities such as this are respon-
sible for pattern formation in systems with two or more
dimensions.

The termpattern selection refers to the tendency of
the system to exhibit patterns with a certain symmetry or
orientation. Understanding the pattern selection processis
of fundamental importance to understanding the patterns
observed in the system. Many patterns are allowable solu-
tions to the dynamics equations of the system, yet only a
subset of the allowed patterns are typically exhibited. Pat-
terns are selected both by constraints on the system and by
the dynamics of the system. The optical patterns that are
the subject of this review exhibit pattern selection by both
mechanisms, although primarily via the system dynamics,
in particular through external forcing [11].

Given a specific system, and thus specific allowed
solutions, control of the generated patterns is limited to
choosing from among these solutions. Hence, it is through
controlling pattern selection that one can control the pat-
tern generated by a system. Attempting to control the
spontaneous patterns formed by nonlinear processes is
not an intrinsically new idea. In fact, attempts to con-
trol many aspects of nature (i.e., weather, ocean currents,
tides, and wind) are simply attempts to control the pat-
terns that arise from nature’s fundamental processes. There
are, however, new applications for controllable pattern-
formation, and one such application—controlling the flow
of optical information—is described in the remainder of
this review.

3. All-optical switching

An all-optical switch is a device that allows the control of
one beam of light with another. Two fundamental prop-
erties of a switch are that the device exhibit at least two
distinguishable states, and that the device input and out-
put are distinguishable. There are many possible config-
urations where the switch can change the output power,
direction, or state of polarization of a beam of light that is
either propagating through a nonlinear medium or gener-
ated within the medium.

One simple all-optical switch that has been demon-
strated in a wide variety of materials is based on the
intensity-dependent refractive index of transparent nonlin-
ear optical media. The intensity-dependent refractive in-
dex leads to a nonlinear phase shift experienced by a wave
propagating through the medium. This effect allows light-
by-light control if such a medium is inserted in one arm
of an interferometer [13]. The output state of the inter-
ferometer could then be controlled by changing the phase
shift experienced by one beam, i.e., by changing the opti-
cal path length of one arm of the interferometer. The phase
shift depends on the total optical intensity incident on the
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nonlinear material, so, if a strong control field is applied,
and assuming the signal field is weakIsignal << Ic, the
nonlinear phase shift is given by

φnl = 2
ω

c
n2IcL, (1)

whereω is the angular frequency,c is the speed of light in
vacuum,L is the length of the medium,n2 is the nonlinear
index of refraction, andIc is the intensity of the control
field. For high-contrast switching, the control beam must
be of sufficient strength to cause a significant change in the
phase of the signal beam,φnl ∼ π.

A second type of all-optical switch relies on the prop-
erties of asaturable absorber. The absorption experi-
enced by a wave propagating through a homogeneously-
broadened medium that exhibits saturable absorption de-
pends on the intensity, and decreases for increasing inten-
sity following the relation [13]

α =
α0

1 + I/Isat
, (2)

whereα0 is the absorption coefficient experienced by a
weak field andIsat is the saturation intensity.

In order to realize a switch based on saturable absorp-
tion, a strong control beam and a weak signal beam co-
propagate through a material that exhibits saturable ab-
sorption. The control beam, in this case, must be of suf-
ficient intensity to saturate the atomic response. Saturation
of a two-level system corresponds to moving a significant
amount of the atomic population from the ground state to
the excited state. In order to maintain population in the ex-
cited state, one photon must be incident on each atom per
excited state lifetime. Quantitatively, this condition is[14]

I ≈ Isat =
h̄ω

στsp
, (3)

whereτsp is the excited state lifetime,̄hω is the photon
energy, andσ is the atomic cross section. Equation (3)
must be modified for the case of a material undergoing op-
tical pumping where the population is redistributed in time
τg. Hence, to maintain saturation, one photon must be in-
cident on each atom perτg, i.e., the relevant time scale
is instead the ground-state lifetimeτg. For a pair of iso-
lated levels driven by resonant light, without collisional
or Doppler broadening, the cross section has a maximum
value of [13, 14]

σmax =
3λ2

2π
, (4)

whereλ is the wavelength of incident light.
As an example, a cloud of cold-trapped rubidium

atoms contained in a magneto-optic trap (MOT) satisfies
the requirements for maximizingσ. The saturation inten-
sity Isat = 3 mW/cm2 for τsp = 25 ns andλ = 780 nm.
Thus, for a beam with radius 2 mm, an optical power of
0.4 mW is required to actuate a saturation-based switch
using such a Rb-MOT medium. Of course, one limita-
tion of the saturation-based switch is that the switching

beam must be weak relative to the saturation intensity.
In the MOT case described here, the saturation intensity
corresponds to a 2 mm diameter beam with a power of
Psat = 80 µW, hence the power of the signal beam
(the beam being turned on or off) must be much lower,
Psignal << Psat = 80 µW. Therefore, in the MOT exam-
ple, the maximum allowed signalPsignal << 80 µW is
significantly weaker that the required switch beam power,
which is equal to 0.4 mW.

To establish a convenient metric for comparing dif-
ferent all-optical switches having different geometries,we
quantify the energy density of the control field in units of
photons perλ2/(2π) [8]. In principle, a larger device that
operates atn photons perλ2/(2π) can be scaled to have
transverse dimension equal to the diffraction limit (λ2) and
operate with onlyn photons. The relationship between the
saturation intensity andσmax is such that an energy density
that corresponds to approximately one photon perλ2/(2π)
is sufficient to saturate a two-level transition. Of course,
energy of this density must be applied for at least the life-
time of the excited state; otherwise, saturation will not oc-
cur. The assumption that saturation of the atomic transition
is required for observing high-contrast all-optical switch-
ing led to the early conclusion that all-optical switches
must operate with at least one photon perλ2/(2π) [15].
As this review shows, many recent all-optical switching
schemes beat this limit by several orders of magnitude
through various approaches. However, the metric remains
useful as a tool for comparison across designs.

Sensitivity, measured in photons perλ2/(2π), is only
one measure of switch performance. Depending on the de-
sign of a given all-optical switch, there are a wide range
of applications each of which has additional requirements.
The next section reviews two general application classes
and outlines the requirements a switching device must sat-
isfy for practical use.

3.1. Applications

Switches can be used in two classes of applications: infor-
mation networks and computing systems. In each of these
applications, information can be stored in either classical
or quantum degrees of freedom. Hence, the requirements
for a device vary depending on the intended application.

Classical, all-optical networks require switches to re-
liably redirect or gate a signal depending on the presence
of a control field at the device input. Ideally, the switch
shows large contrast between on and off output levels and
can be actuated by low input powers. If the network carries
quantum information, the switch must be triggered by an
input field containing only a single quanta (photon). Ad-
ditionally, in the quantum case, the quantum state of the
transmitted signal field must be preserved.

If a switch is to be used as a logic element in a classi-
cal computing system, it must have the following charac-
teristics: input-output isolation, cascadability, and signal
level restoration [16]. Input-output isolation prohibitsthe
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device output from having back-action on the device in-
put. Cascadability requires that a device output have suf-
ficient power to drive the input of at least two identical
devices. Signal level restoration occurs in any device that
outputs a standard signal level in response to a wide range
of input levels. That is, variations in the input level do not
cause variations in the output level. Switching devices that
satisfy these requirements are considered scalable devices;
the properties of the individual device are suitable for scal-
ing from one device to a network of many devices.

While scalability describes important properties of a
switching device, sensitivity provides one way to quantify
its performance. A highly sensitive all-optical switch can
be actuated by a very weak optical field. Typical metrics
for quantifying sensitivity are: the input switching energy
(in Joules), the input switching energy density (in photons
perσ = λ2/2π) [8, 15], and the total number of photons
in the input switching pulse.

One may not expect a single device to satisfy all of the
requirements for these different applications. For example,
a switch operating as a logic element should output a stan-
dard level that is insensitive to input fluctuations. This may
be at odds with quantum-switch operation where the de-
vice must preserve the quantum state of the signal field. An
interesting question arises from these requirements: What
happens when a classical switch is made sensitive enough
to respond to a single photon? Reaching the level of single-
photon sensitivity has been the goal of a large body of re-
cent work that is reviewed below.

3.2. Previous Research on Low-Light-Level
Switching

Two primary approaches to low-light-level switching have
emerged, both of which seek to increase the strength
of the nonlinear coupling between light and matter. The
first method uses fields and atoms confined within and
strongly coupled to a high-finesse optical cavity. The sec-
ond method uses traveling waves that induce quantum in-
terference within an optical medium and greatly enhance
the effects of light on matter. These methods have been
recently reviewed in Ref. [17], the following brief discus-
sion and Table 1 summarize the key differences between
various methods.

Cavity quantum-electrodynamic (CQED) systems of-
fer very high sensitivity by decreasing the number of pho-
tons required to saturate the response of an atom that is
strongly coupled to a mode of the cavity. Strongly-coupled
CQED systems show a nonlinear optical response to fields
corresponding to much less than a single cavity photon
[4], and have also demonstrated the photon blockade ef-
fect where the arrival and absorption of one photon pre-
vents subsequent absorption of a second photon [5].

A different technique for all-optical switching in cav-
ities relies on creating and controlling cavity solitons in
vertical cavity surface emitting lasers (VCSELs) [18]. A

VCSEL can be prepared for cavity solitons by injecting a
wide holding beam along the cavity axis. A narrow “write”
beam superimposed on the larger holding beam induces a
cavity soliton that persists typically until the original hold-
ing beam is turned off. This system naturally serves as a
pixel-based optical memory, where solitons are written to
and stored in the cavity field.

In contrast to cavity systems, traveling wave ap-
proaches can operate with multi-mode optical fields and
also achieve few-photon sensitivity. Recent progress in
traveling-wave low-light-level nonlinear optics has been
made through the techniques of electro-magnetically in-
duced transparency (EIT) [7, 10, 24–27]. As an example,
Harris and Yamamoto [8] proposed a switching scheme us-
ing the strong nonlinearities that exist in specific states of
four-level atoms where, in the ideal limit, a single photon
at one frequency causes the absorption of light at another
frequency. To achieve the lowest switching energies, the
narrowest possible atomic resonances are required, which
can be obtained in complex experimental environments
such as trapped cold atoms [9, 10, 26–28].

Other low-light-level all-optical switching experi-
ments have also been demonstrated recently in traveling-
wave systems. By modifying the correlation between
down-converted photons, Resch et al. [19] created a
conditional-phase switch that operates at the single pho-
ton level. Using six-wave mixing in cold atoms, Kang et
al. [20] demonstrated optical control of one field by apply-
ing another input switching field.

Another approach combines the field enhancement of-
fered by optical cavities with the strong coupling of co-
herently prepared atoms. Bistability in the output of a cav-
ity filled with an EIT medium that also shows large Kerr-
type nonlinearity [29] exhibits switching. Photonic crystal
nanocavities have also shown bistability switching [30].
Taking a different approach, Islam et al. [21] exploit a
modulational instability in an optical fiber interferometer
to gate the transmission of a strong beam by injecting a
weak beam.

Many of these other systems satisfy some, but not all,
of the criteria for scalability. Of the systems just discussed,
CQED systems are designed to operate in a single field
mode, which limits the number of input and output chan-
nels to one per polarization. Additionally, all fields are
strongly coupled to the atom-cavity system so the control
and signal fields must be of comparable strength. Thus a
CQED switch is not cascadable. EIT systems suffer from
a similar drawback in that the input and output fields are
required to have the same power, making them not cascad-
able. Another highly sensitive system, the modulational-
instability fiber interferometer, is both cascadable and ex-
hibits signal level restoration. In several ways, the latter
system is similar to pattern-based devices: it exploits the
sensitivity of instabilities and uses a sensitive detector(an
interferometer in their case and pattern orientation in the
present case) to distinguish states of the switch.

Finally, there has been a very recent proposal that does
not use cavities or traveling optical fields, but instead takes
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Switch design Reference Switching photons photons/σ τr Cascadable
CQED Hood et al. [4] 1 10−4 25 ns N
CQED Birnbaum et al. [5] 1 10−5 25 ns N
EIT Zhang et al. [10] 20 10−5 0.7µs N
Parametric Down Conversion Resch et al. [19] 1 - - N
6-wave mixing Kang et al. [20] 108 2 0.54µs N
MI in fiber Islam et al. [21] ∼2000 24 50 ps Y
Plasmonic nanowire* Chang et al. [6] 1 - - Y

Pattern-based switches
VCSEL solitons Hachair et al. [18] 24,000 140 500 ps -
semiconductor quantum wells* Kheradmand et al. [22] - - <100 ns Y
semiconductor quantum wells* Schumacher et al. [23] - - - Y
Rubidium vapor Dawes et al. [17] 600 10−3 3 µs Y

Table 1 Comparison of all-optical switching schemes. *Results of numerical simulation.

advantage of photon-induced surface plasmons excited in
a conducting nano-wire that couple strongly to a two-level
emitter placed nearby. This strong coupling enables ef-
fects that are similar to those observed in CQED. Specif-
ically, Chang et al. [6] suggest that a system consisting of
a nano-wire coupled to a dielectric waveguide can be used
to create an optical transistor that is sensitive to a single
photon. Photons in the dielectric waveguide are efficiently
coupled to plasmons that propagate along the nanowire.
A two-level emitter placed close to the nanowire has a
strong effect on the plasmon transmission. The absorption
of a single photon by the emitter is sufficient to change
the nanowire from complete plasmon reflection to com-
plete plasmon transmission. If implemented as proposed,
a surface-plasmon transistor could operate with single-
photon input levels, and gate signals containing many pho-
tons.

Many all-optical switches have been successfully
demonstrated over a period spanning several decades.
However, in almost every case, one or more important
features is missing from the switching device. With the
requirements of scalability and sensitivity in mind, this
review presents recent results generated from a new ap-
proach to all-optical switching.

3.3. Switching with Transverse Optical Patterns

A new approach to all-optical switching is to exploit col-
lective instabilities that occur when laser beams interact
with a nonlinear medium [1]. One such collective instabil-
ity occurs when laser beams counterpropagate through an
atomic vapor. In this configuration, it is known that mirror-
less parametric self-oscillation gives rise to stationary, pe-
riodic, or chaotic behavior of the intensity [31, 32] and/or
polarization [33–35].

Another feature of counterpropagating beam instabil-
ities is the formation of transverse optical patterns, i.e.,
the formation of spatial structure of the electromagnetic

field in the plane perpendicular to the propagation direc-
tion [36, 37]. This is also true for recent experiments where
a wide variety of patterns can be generated, including rings
and multi-spot off-axis patterns in agreement with previ-
ous experiments [35, 36, 38].

Building an all-optical switch from transverse optical
patterns combines several well-known features of nonlin-
ear optics in a novel way. Near-resonance enhancement of
the atom-photon coupling makes our system sensitive to
weak optical fields. Using optical fields with a counter-
propagating beam geometry allows for interactions with
atoms in specific velocity groups leading to sub-Doppler
nonlinear optics without requiring cold atoms. Finally, us-
ing the different orientations of a transverse pattern as dis-
tinct states of a switch allows one to maximize the sen-
sitivity of the pattern forming instability. Instabilities, by
nature, are sensitive to perturbations, so by combining in-
stabilities with resonantly-enhanced, sub-Doppler nonlin-
earities, researchers in this field have created a switch with
very high sensitivity.

4. Switching in warm Rb vapor

A pair of beams counterpropagating through a nonlinear
optical medium give rise to patterns formed by light that
is spontaneously emitted at an angle to the pump-beam
axis. This section presents experimental results of pattern
formation in a counterpropagating beam system where a
sample of warm rubidium vapor serves as the nonlinear
medium.

4.1. Experimental apparatus

A diagram of the atomic-vapor experimental setup is
shown in Fig. 1 [17]. Two beams of light from a com-
mon laser source counterpropagate through warm rubid-
ium vapor contained in a glass cell. The light source is
a frequency-stabilized cw Ti:Sapphire laser, the output of
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Figure 1 Experimental setup for transverse optical pattern gen-
eration. The output of a frequency-stabilized cw Ti:Sapphire
laser serves as the source. A polarizing beamsplitter (PBS1) sep-
arates the forward (cw) and backward (ccw) beams within the
triangular ring cavity. The backward beam is brought into hori-
zontal polarization by a half-wave plate (λ/2). The forward and
backward beams counterpropagate through a warm87Rb vapor
contained in a 5-cm-long glass cell. A polarizing beam-splitter
(PBS2) reflects instability-generated light in the vertical polar-
ization which is observed by a CCD camera and avalanche pho-
todiode (APD).

which is spatially filtered using a single-mode optical fiber
with an angled entrance face and a flat-polished exit face.
The beam is then collimated using a pair of convex lenses
arranged as a telescope. The spot size (1/e field radius),
denoted byw0, is controlled by the configuration of the
telescope, and the beam waist is located in the center of
the vapor cell. The power ratio between the pump beams
is controlled by a half-wave plate at the input of the first
polarizing beam splitter (PBS1). We denote the beam pass-
ing through PBS1 as the forward beam and the reflected
beam as the backward beam. A second half-wave plate in
the backward beam path rotates the polarization such that
the pump beams are linearly polarized with parallel polar-
izations.

The cell is fixed with lengthL = 5 cm, and a di-
ameter of 2 cm. The cell contains a droplet of rubidium,
melting point 39.3◦C, which is in equilibrium with ru-
bidium vapor. The rubidium contained in the cell has not
been isotopically enriched and thus contains the two nat-
urally abundant isotopes:∼ 72% 85Rb, 28%87Rb. The
cell is heated to 80◦C corresponding to an atomic num-
ber density for87Rb of 2×1011 atoms/cm3. The cell has
uncoated quartz windows that have fixed and opposing
tilt angles of±11 degrees with respect to the incident

laser beams to prevent possible oscillation between the
windows. The cell has no paraffin coating on the inte-
rior walls that would prevent depolarization of the ground-
state coherence, nor does it contain a buffer gas that would
slow diffusion of atoms out of the pump laser beams.
The Doppler-broadened linewidth of the transition at this
temperature is∼550 MHz. To prevent the occurrence of
magnetically-induced instabilities and reduce Faraday ro-
tation, a cylindricalµ-metal shield surrounds the cell and
attenuates the ambient magnetic fields by a factor of>103.
In order to attenuate the static magnetic field created by the
heaters coils, they are placed outside the shielding.

A polarizing beam splitter (PBS2) placed in the beam
path separates light polarized orthogonally to the pump
beam. This light, henceforth referred to asoutput light,
is subsequently split with a 50/50 beamsplitter and then
observed simultaneously using any two of the following:
a CCD-camera (Marshall V-1050A), an avalanche pho-
todiode (Hamamatsu C5460), or a photomultiplier tube
(Hamamatsu H6780-20) as shown in Fig. 1.

4.2. Instability generated light

In an experimental setup similar to that described above,
Dawes et al. [1, 17] observe instability generated light
(output light) in the state of polarization orthogonal to that
of the pump beams and with the same frequency as the
pump beams. The following sections describe features of
the instability as well as the conditions required for observ-
ing pattern formation. The experimental variables are the
frequency of the pump light, the alignment and intensity
of the pump beams, and the pump beam waistw0.

The fixed cell length has been chosen to balance large
optical depth, which increases with increasingL, and
available transverse modes, which decrease with increas-
ing L. The Fresnel number

F =
w2

0

λL
, (5)

quantifies the number of transverse modes supported by
the geometry whereλ is the wavelength [14]. Dawes et al.
have observed light generated off-axis for Fresnel numbers
between 1.9 and 7.8, corresponding tow0 between 270µm
and 550µm, respectively. The results reviewed here corre-
spond tow0 = 455 µm with λ = 780 nm, orF = 5.3.

The other fixed parameter, the temperature, has been
chosen based on optimizing the pattern-formation. Chang-
ing the temperature of the cell affects both the temperature
of the atomic vapor and the atomic number density. For
this work, changing the atomic number density primarily
affects the optical depth of the vapor. By varying the cell
temperature, and observing the amount of optical power
generated by the instability, Dawes et al. found that the op-
timum temperature is80◦ C. Fitting the absorption profile
at T = 80◦ C to a model for Rubidium absorption, they
find that the maximum Doppler-broadened optical depth
at this temperature isαL ≃ 55 [17].
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4.2.1. Pump-beam frequency

The power of the output light is maximized (and the
threshold for the instability is lowest) when the frequency
of the pump beams is set near an atomic resonance, i.e.,
the instability occurs near either the D1 or D2 transition
of 87Rb. The results reviewed here are for pump-beam fre-
quencies near the D2 transition (5S1/2 → 5P3/2, 780 nm
wavelength).

Figure 2 shows the power of the output light as a
function of pump frequency detuning, defined as∆ =
ν − νF=1,F ′=1 in cycles/s. One can observe several
sub-Doppler features, where the maximum power emit-
ted in the orthogonal polarization occurs when the laser
frequencyν is tuned∆ = +25 MHz. The Doppler-
broadened linewidth of the transition at this temperature
is ∼ 550 MHz, hence, the generated light is only emitted
for pump frequencies in a narrow range within the Doppler
profile. For this detuning, 3.5µW of output light is gen-
erated in the forward direction, indicating that∼ 1% of
the incident pump power is being converted to the orthog-
onal polarization. Because the detuning is small relative
to the Doppler width, a significant amount of the pump
light is absorbed by the medium. Although the medium
is optically thick (αL ∼ 55), there is substantial bleach-
ing with 415µW of forward pump-beam power, which al-
lows transmission of 50µW of forward pump light. Of this
transmitted power, 3.5µW, or ∼ 7%, is converted to the
orthogonal polarization [17]. In the next section, we dis-
cuss how the presence of absorption affects the instability.
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Figure 2 Instability-generated optical power as a function of
pump laser frequency detuning (∆ = ν − νF=1,F ′=1). The plot
shows the power generated in the forward direction and in the
state of polarization orthogonal to that of the pump beams. These
data correspond to a single scan through the5S1/2(F = 1) →
5P3/2(F

′) transition in87Rb from low to high frequency. The
bold tick marks at the top of the frame indicate the hyperfine
transitions labeled by FF’, where F (F’) is the ground (excited)
state quantum number. Pump beam power levels for this data are
415µW (forward) and 145µW (backward), andw0 = 455 µm.

The instability clearly occurs on the blue-detuned
(high-frequency)side of the5S1/2(F = 1) → 5P3/2(F

′ =
1) transition. This is the side of the resonance where the
nonlinear refractive index has a positive value and hence
self-focusing is expected to occur. This experimental ob-
servation agrees with theoretical models and can be ex-
plained using a simple argument based on weak-wave re-
tardation [39]. The forward four-wave-mixing process can
only become phase matched for off-axis beams if the non-
linear refractive indexn2 has a positive value, i.e., on the
high-frequency side of an atomic resonance [13]. Ifn2 is
negative, the off-axis wavevectors are shortened, and thus
cannot be phase-matched to the pump-beams regardless of
the angleθ [13, 40].

The width of the feature shown in Fig. 2 changes
with pump power such that it is narrower near thresh-
old. This change indicates that phase matching depends
on the pump power such that a wider range of frequencies
are phase-matched for larger pump powers. The amount
of power generated in the orthogonal polarization is also
lower near threshold and increases linearly with increas-
ing pump power as described in the following section.

4.2.2. Pump-beam intensity

The instability observed in this system has a very low
threshold; the power required to induce self-oscillation
is less than 1 mW, which is comparable to the results
obtained from coherently-prepared atomic media [25]. A
common way to measure the instability threshold for a
setup with counterpropagating beams is to fix the power
of one of the beams and measure the output power as a
function of the power in the second pump beam [25, 34].
For a pump-beam detuning of∆ = +25 MHz and with a
fixed forward pump power of 415µW, Dawes et al. find
that the backward pump power threshold is∼75µW, cor-
responding to a total pump power of 490µW [17].

Another way to measure the instability threshold is to
determine the minimum total pump power necessary to
generate output light. We find that there is an optimum ra-
tio of forward power to backward power of∼3-to-1. At
this ratio, the threshold for off-axis emission is 385µW,
which is slightly lower than the threshold measured with
fixed forward beam power. Dawes et al. report patterns and
switching with∼560 µW of total power, corresponding
to 40% above threshold. Both threshold measures demon-
strate that the nonlinear process that generates new light
is induced by a pair of very weak fields. This indicates
strong nonlinear matter-light interaction comparable with
the best reported results to date for warm-vapor counter-
propagating beam systems [25].

For most of the early observations of nearly-degenerate
instabilities, strong pump fields were used (typically hun-
dreds of mW) [36, 38, 41]. A considerably higher thresh-
old was reported for the first observation of polarization
instabilities in a sodium vapor [34], where a threshold of
tens of mW was found when the pump fields were tuned
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near an atomic resonance. More recently, Zibrov et al. [25]
observed parametric self-oscillation with pump powers in
theµW regime using a more involved experimental setup
(“double-Λ” configuration) designed specifically to lower
the instability threshold. In their experiment, atomic co-
herence effects increase the nonlinear coupling efficiency.
They report oscillation with several mWs of total pump
power. With 5 mW of forward-beam power, their insta-
bility threshold corresponds to 20µW in the backward
beam. In contrast, the results reviewed here demonstrate
that spontaneous parametric oscillations are induced by
µW-power counterpropagating pump-beams without the
need for special coherent preparation of the medium. Fur-
thermore, Zibrov et al. observed only on-axis emission,
whereas Dawes et al. found that off-axis emission requires
roughly half as much pump power as on-axis emission
with our pump beam configuration. In situations where
low power and high sensitivity are important, such as in
all-optical switching, the lower instability threshold may
make off-axis instabilities preferable.

4.2.3. Patterns

In the context of all-optical switching, pattern forma-
tion is the most notable feature of the counterpropagating
beam instability described above. When the pump beams
are above threshold, i.e., have total power greater than
420µW, generated light is emitted at an angleθ ≃ 4 mrad
with respect to the pump beam axis, as shown in Fig. 3(a).
A perfectly symmetric system is expected to generate light
with intensity that is distributed evenly around the az-
imuthal angle, and hence would form a ring pattern in
the far field. Perfect symmetry, however, is unattainable in
the laboratory where imperfections in optical elements im-
part small perturbations on the phase and amplitude of the
beams. The instability responds to such perturbations by
generating patterns that are not cylindrically symmetric.
For this reason, the most common patterns reported consist
of two, four, or six spots in a variety of arrangements. In all
cases, the spots are located along the ring projected by the
cones onto the detection plane as illustrated in Fig. 3(b-d).

Most theoretical treatments consider only the case
where the pump beams are strictly counterpropagating,
corresponding to pump beams with equal and opposite
wavevectors. In experiments, it is common to have slight
mis-alignment, either intentional or accidental, between
the pump beams.

With misaligned pump beams, the generated patterns
change. This change is due to a change in the phase-
matching conditions for the different azimuthal angles.
Hence, there are different amounts of gain for different off-
axis beams, and for those each beam that experiences suf-
ficient gain for self-oscillation, a spot will be generated in
the pattern. Alignment of the pump beams provides one
method for pattern selection in the counterpropagating-
beam system.

Figure 3 Light is generated along cones (blue) centered on the
pump-beam axis when pump beams (red) of a sufficient intensity
counterpropagate through warm rubidium vapor. A far-field de-
tection plane shows patterns formed by the generated light.b) A
ring pattern is expected for a perfectly symmetric system. c) Six
spots form a hexagon, the typical pattern for pump beam powers
more than 20% above threshold. d) Two spots are observed just
above threshold or when the pump beams are mis-aligned. From
Ref. [1]

4.2.4. Secondary instability

In addition to the instability responsible for pattern for-
mation, the system exhibits a secondary modulational in-
stability (MI) that is manifested as oscillations in the in-
tensity of the generated light. The frequency of the in-
tensity oscillations due to this instability depends on the
alignment of the pump beams. For well-aligned beams,
counterpropagating along a common axis, the MI is gen-
erally suppressed as long as the pump-beam intensity is
not significantly far above threshold. Figure 4 illustrates
the onset of this secondary instability for the case of
slightly misaligned pump beams. The threshold behavior
described previously is evident here as well: the power
generated in the orthogonal polarization increases linearly
above 385µW total pump power. Also visible is the satura-
tion of the pattern-forming instability near 800µW, where
increasing the total pump power no longer increases the
generated power. The height of the vertical bars indicates
the peak-to-peak amplitude of oscillations due to the sec-
ondary MI. There is a notable increase in the amplitude
of the MI oscillations above 560µW total pump power
(indicated in the figure), and a significant increase above
800µW total pump power.

When the pump beams are made to counterpropagate
with a small angle between their axes, observing the pho-
todetector signal with a spectrum analyzer reveals a har-
monic series with a fundamental frequency that increases
for larger angular separation of the pump beam axes. The
spectrum for pump beams misaligned with∼ 0.4 mrad
between the beam axes has a fundamental frequency of
250 kHz [42]. The atomic vapor system operating with
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Figure 4 The peak-to-peak oscillations generated by the sec-
ondary modulational instability are indicated by the vertical bars.
The output light generated in the orthogonal polarization is plot-
ted as a function of total pump-beam power. Data are collected
with fixed forward-to-backward pump-beam power ratio of 3:1,
and detuning∆ = +25 MHz.

this amount of pump beam misalignment exhibits sensi-
tive switching as discussed in the next section

4.3. Switch response

To quantify the dynamic behavior of their switch, Dawes
et al. inject a series of pulses by turning the switch beam
on and off with the EOM [17]. Spatially filtering the out-
put pattern enables direct measurement of the switch be-
havior. High-contrast switching is confirmed by simulta-
neously measuring two output ports. Figure 5(a) indicates
the power of the injected switch beam as a function of
time. The signal from the off-state detector is shown in
Fig. 5(b) and is high when the switch beam is not applied
and low during a switch-beam pulse. The on-state detec-
tor is shown in Fig. 5(c) and shows the opposite behavior:
it is low when the switch beam is not applied and high
during each switch-beam pulse. These alternating signals
demonstrate switching of the power from one switch state
to another with high contrast. The total power generated in
the pattern is∼ 3 µW. Each aperture selects one of the two
generated spots, so the switch output power is∼ 1.5 µW
per aperture. Of course, two apertures could be used per
switch state to transmit the full∼ 3 µW output.

One notable feature of the system response is the tran-
sition from complete switching to partial switching. The
first three pulses in Fig. 5 show that the on-state detector is
fully illuminated and the off-state detector is dark. This in-
dicates that the switch beam has caused complete rotation
of the pattern and transferred all of the power from the off-
state spots to the on-state spots. For the last seven pulses
in the series, the system exhibits partial switching, where
the on-state detector is partially illuminated and the off-
state detector is partially darkened. This partial response

indicates that the off-state spots are suppressed but not ex-
tinguished when the switch beam is applied with less than
900 pW. Similarly, the on-state spots are generated but not
at full power. In this intermediate regime, from 900 pW to
<300 pW, the response depends on the input power.
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Figure 5 The switch responds to a series of ten pulses by trans-
ferring power from theoff state spots to theon state spots. a) The
switch beam power steadily decreases in power from 1.2 nW to
200 pW. b) The off spot is extinguished in the presence of the
switch beam. c) The on spot power increases in the presence of
the switch beam. The data shown are collected in a single shot
that contains 22 additional ten-pulse sets with similar response.
No signal averaging has been performed on the switch response
data (b,c). The measured switch-beam power shown in (a) is av-
eraged over 10 shots.

Barely visible in Fig. 5 is a the secondary modulational
instability that causes small oscillations in the total output
power. The modulation period of this secondary instability
(4 µs= 1/250 kHz) and the characteristic response time
of the switch both correspond roughly to the transverse
transit time of a thermal atom through the pump beams.
This is a typical time scale for nonlinearities due to optical
pumping.
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4.3.1. Switching photon number

To quantify the sensitivity of the system, Dawes et al. mea-
sure the response time and calculate the number of photons
Np required to actuate the switch. The response time of
the deviceτr is defined as the time between the initial ris-
ing edge of the electronic signal driving the EOM and the
point where the on-spot signal crosses a threshold level set
to roughly correspond to a signal-to-noise ratio of∼3 dB.1

Results using this threshold are shown in Fig. 6(a) and we
find that the measured response time increases as the input
switch beam power decreases.
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Figure 6 The response timeτr and number of switching photons
Np as a function of input power. Data are generated from 22 se-
quential traces like the one shown in Fig. 5 acquired after a single
trigger. The error bars indicate one standard deviation of the mea-
sured values. The solid line indicates the fit:Np = 7081Ps +404
for Ps in nW. It should be noted that the response times for the
switch are on the order of a fewµs, whereas the response time of
the measurement system is< 35 ns.

The number of photons required to actuate the switch
is given byNp = τrPs/Ep whereτr is the response time,
Ps is the switch beam power andEp = 2.54 × 10−19 J
is the photon energy. For ten switch-beam powers be-
tween 510 pW and 35 pW, the response time is plotted in
Fig. 6(a), and the number of switching photons is plotted
in Fig. 6(b). The response time is longer for weak switch-
beam powers so the photon number decreases gradually
as the input power decreases. The data points indicate the
average of 22 data points for each of the ten switch-beam
pulses, and the error bars represent one standard deviation
in the response times observed for each pulse.

1 The SNR∼3 dB criterion corresponds to the threshold where
the bit-error-rate decreases below 0.05,i.e., it is the point where
pulses can be correctly detected with probability greater than 5%
[43].

The implication of the linear regression shown in
Fig. 6(b) is that, in the limit asPs → 0, the number of
switching photonsNp → 400. This would indicate that
the minimum number of photons capable of actuating the
switch is roughly 400. The final data point shown corre-
spond to switching withNp = 600 ± 40, only 200 pho-
tons above this limit, and a factor of∼5 lower than the first
reported observation of pattern-based all-optical switching
with 2,700 photons [1].2

4.3.2. Transistor-like response

The response shown in Fig. 5, demonstrating the saturated
and linear response regimes, suggests that this device op-
erates in a manner that is analogous to an electronic tran-
sistor. Furthermore, the two response regimes exhibited by
the switch indicate that the output satisfies the conditions
for signal level restoration, as discussed in Sec. 3.1.

For a device to exhibit signal level restoration, varia-
tions in the input level cannot cause variations in the output
level. In every device, however, there is a narrow range of
input levels, known as the intermediate region, that lead to
intermediate output levels. For input levels above or be-
low the intermediate range the output issaturated as a
logic high or low respectively. In the case of the Rb-vapor
device, this intermediate region is between 900 pW and
<35 pW. For input levels above 900 pW, the output is high
with a level set by the pump beam power.

Signal level restoration is a key property of the elec-
tronic transistor enabling large networks of electronic
logic elements. This demonstration of an optical logic el-
ement that exhibits level restoration is a key step towards
practical optical switches. An all-optical transistor would
have applications in many data processing and communi-
cation networks in the future.

One notable limitation of the atomic-vapor switch sys-
tem is the slow response time (on the order of 3µs). A re-
lated approach, based on optical pattern formation in semi-
conductor systems, shows promise as a high-speed, high-
bandwidth system. The details of nonlinear optical pattern
formation in semiconductor systems, and a discussion of
recent work, is presented in Section 6.

5. Numerical results

In order to establish the necessary ingredients for a theo-
retical model to describe the switching behavior observed
experimentally, we develop a simple extension to a previ-
ous model of a pattern-forming counterpropagating beam
system. Based on the model of Firth and Paré [44], nu-
merical simulations performed by Chang et al. describe

2 The error reported in this value ofNp is a combination of
statistical error in the measurement of the switch-beam power
(∼0.5%), and statistical variations in the response time measured
for 22 sequential shots (∼5%).
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hexagonal pattern formation in a counterpropagatingbeam
system [45]. We extend this prior work by simulating all-
optical switching with transverse patterns. Specifically,we
simulate the effect of a weak switch beam on the orienta-
tion of the hexagonal pattern generated by gaussian pump
beams that counterpropagate through a Kerr-type nonlin-
ear medium. Simulations of the time response of this sys-
tem show behavior that is qualitatively similar to exper-
imental observations. In particular, the response time in-
creases as the switch-beam power decreases.

5.1. 3D model

The model used in these simulations is described in Ref.
[44] and has been extended for our investigations to the
case of two transverse dimensions. We assume scalar
fields, i.e., the model does not account for the vector na-
ture of the fields, and hence cannot describe polarization
instabilities, and we do not include absorption effects.
Nonetheless, this model is sufficient to describe pattern
formation in counterpropagating-beam nonlinear optical
systems. The forward and backward fields counterpropa-
gating through a Kerr-like medium are described by the
dimensionless equations

(

∂

∂z
+

∂

∂t

)

F =
i

4πF∇2
⊥F + i(|F |2 + 2|B|2)F,

(6)
(

− ∂

∂z
+

∂

∂t

)

B =
i

4πF∇2
⊥B + i(|B|2 + 2|F |2)B.

(7)

Time is normalized by the transit time through the
medium,tr = n0L/c, the longitudinal dimensionz is nor-
malized by the medium length, and the transverse dimen-
sionsx, y are normalized by the beam waistw0 whereF
is the Fresnel number, see Eq. (5).F (B) is the forward
(backward) field amplitude. The nonlinear coefficientn2

is scaled into the field amplitudes and is assumed to be
positive as appropriate for the experimental conditions de-
scribed in Sec. 4.1. The medium length is also scaled into
the field amplitudes such thatF 2 = IL whereI is the
pump-beam intensity. One consequence of this scaling is
that the productIL represents the nonlinear phase shift, in
radians, experienced by an off-axis wave.

The transverse profile of the pump waves are assumed
to be Gaussian such that

F (x, y, 0, t) = F0e
−(x2+y2)ei(Kxx+Kyy) + ξ(x, y), (8)

B(x, y, L, t) = B0e
−(x2+y2), (9)

whereL is the medium length,Kx,y sets the misalignment
between forward and backward wave-vectors, andξ is a
delta-correlated Gaussian random variable with〈ξ〉 = 0.
The random time-independent noise source is included to
simulate the effects of small spatial variations in the input

beam. Typically, the peak-to-peak noise amplitude is set
to ∆ξ = 0.01, equivalent to 1 percent of the pump field
amplitude.

Equations (6) and (7) are solved numerically using a
split-step beam propagation method where linear diffrac-
tion is computed via fast Fourier transform [46]. The nu-
merical grid of 256 by 256 transverse points and 20 lon-
gitudinal slices. The numerical grid is slightly rectangular
with thex dimension 1% larger than they dimension. This
prevents the square symmetry of the grid from biasing the
pattern formation process. Additionally, suitable choiceof
parameters and appropriate spatial filtering are used in or-
der to avoid spurious high-K instabilities [47, 48].

5.2. Controlled pattern rotation

The primary result presented by Chang et al. is the forma-
tion of hexagonal patterns in a three-dimensional model of
gaussian beams counterpropagating through a medium ex-
hibiting Kerr nonlinearity. Their simulations are conducted
with F = 63.7 andIL = 0.565, where the threshold for
plane-wave pattern formation predicted by Firth and Paré
is IL ≃ 0.45. Therefore, Chang et al. simulate pattern for-
mation for pump beams that are 25% above the minimum
plane-wave threshold.

We have conducted simulations with a wide range of
values ofF between 64 and 4, where our experimental
conditions correspond toF = 5.3. Simulations in this
range all exhibit hexagonal pattern formation and repro-
duce the results of Chang et al. In order to simulate the
specific geometry of our experiment, the results reviewed
here are of simulations whereF = 5.3 andIL = 0.565
(∼ 25% above threshold).

Images of the far field pattern generated in a typical
simulation are shown in Fig. 5.2(A), where the time corre-
sponding to each frame is indicated in units of the transit
time tr. In the initial frame of Fig. 5.2(A), the transmitted
forward pump-beam is visible at the center, and the weak
off-axis perturbation is visible to the right. This perturba-
tion is used to quickly induce hexagonal pattern forma-
tion. Without the initial perturbation, hexagons are sponta-
neously generated after 100-150 transit times. Att = 17,
the field that is conjugate to the perturbation, and due to
forward four-wave mixing, is visible to the left of the cen-
tral pump. The dark dot in the center of the first two frames
is the result of numerical filtering used to remove the DC
artifact introduced by computing the far-field via FFT.3

At t = 23, a ring pattern has formed that is replaced by
hexagons att = 53. The seed beam is turned off att = 35
and is not visible att = 53. It is interesting to note that
the ring pattern, predicted by generalizing the models of
Yariv and Pepper [49] or Firth and Paré [44] to cylindri-
cally symmetrical transverse dimensions is a transient so-
lution that appears early (t = 23) in the development of

3 This filtering is only performed on the images in order to
improve the contrast, and not during the simulation itself.
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A B
Figure 7 Numerical simulation of coun-
terpropagating gaussian beams shows ring
and hexagon pattern formation in the far
field. (A) For this case, the pump beams
are perfectly counter-propagatingKx =
Ky = 0. (B) The location of the on-
and off-state apertures are indicated rel-
ative to the initial hexagon pattern that
forms at t = 53. The on-state aperture
(upper square) is located opposite the ap-
plied switch beam, and the off-state aper-
ture (lower square) transmits the spot im-
mediately counter-clockwise from the on-
state aperture.

the off-axis patterns. The ring is not a stable solution for
the system in the presence of symmetry breaking, due in
this case to the initial seed beam, and the ring breaks up
into six spots after a short time. The second row of frames
shown in Fig. 5.2(A) are collected after the application of
an off-axis switch-beam, which turns on att = 85, and are
discussed in the next section.

5.3. Switch response

In our simulations, much like in the experiments of Dawes
et al. [17], we observe that injecting a weak switch beam
into the nonlinear medium after hexagons have formed
causes the hexagon pattern to rotate such that a bright spot
is aligned to the direction of the switch beam. This rota-
tion is illustrated in the lower four frames of Fig. 5.2(A).
The switch beam is applied att = 85, and becomes vis-
ible between the two right-side spots att = 101. For the
frames shown, the switch beam power isPs = 10−4Pp,
wherePp is the power of each of the counterpropagating
pump beams. Att = 150, the counterclockwise rotation
of the pattern can be observed and continues until the end
of the simulation att = 300 where the pattern has rotated
such that the locations that were previously bright are now
dark.

As in the experiments, the patterns generated in this
simulation can be spatially filtered in order to define two or
more output channels. Figure 5.2(B) indicates the location
of the apertures used to filter the numerical results. Square
apertures are used for numerical efficiency, but the results
are not expected to differ if they are replaced with round
apertures. The power transmitted by these apertures is cal-
culated by summing the simulated intensity values within
each aperture. For four simulation runs, each with differ-
ent switch-beam power, the power transmitted through the
on- and off-state aperture as a function of timet is shown
in Fig. 8(a) and (b), respectively.

After the initial transients in the pattern formation, the
power in the off- and on-spots stabilize within 50 transit
times. Att = 85, the switch-beam is applied and the pat-
tern begins to rotate, transferring power from the off-state
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Figure 8 The power transmitted by apertures in the numerical
model exhibits switching behavior that is similar to the exper-
imental system. The response of the on- and off-state aperture
transmission is shown for four levels of switch-beam power.The
switch beam is turned on att = 85, indicated by the arrow in
(a). As the switch-beam power decreases, the simulation exhibits
slower response, i.e., slower pattern rotation. The switch-beam
power (in units of pump-beam power) corresponding to these
four traces are10−4 (solid black),2.5 × 10−5 (large dash blue),
4 × 10−6 (small dash red), and1 × 10−6 (dash-dot green). The
horizontal dotted line indicates the threshold used to calculate
response times for the simulated switch.

aperture to the on-state aperture. ForPs = 10−4Pp, com-
plete rotation occurs within 200 transit times. For lower
switch beam power, the pattern rotates more slowly as the
remaining traces show in Fig. 8. To compare the change in
response time observed in the simulation to that observed
experimentally, we measure the response time of the sim-
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ulated switch as the time between the application of the
switch beam (t = 85) and the threshold crossing for the
on-spot. The threshold, also shown in Fig. 8, is chosen to
roughly correspond to the threshold level used in the ex-
periments.
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Figure 9 Simulation of the switch exhibits an increase in re-
sponse time for decreasing power that is qualitatively similar to
experimental observations. To facilitate comparison to Fig. 6(a),
the horizontal axis has high switch-beam power to the left and
low switch-beam power to the right.

The response time of the simulated switch data shown
in Fig. 9 ranges from 40 transit times to 210 transit times,
as shown in Fig. 9. For comparison, the transit time of the
5-cm-long vapor cell used in our experiment is 160 ps, so
the simulated response times would correspond to exper-
imental values of 6.4 ns and 33.6 ns respectively. Experi-
ments observe response times between 2 and 4µs in Rb
vapor, so it is clear that this numerical model does not
agree quantitatively with these observations. However, the
simulated response time does exhibit a sharp increase in
the limit of low switch-beam power, which is qualitatively
similar to experimental observations. This increase in re-
sponse time for weak inputs may be an indication that the
switch undergoes critical slowing down [12], which would
not be surprising since the orientation of the pattern ex-
hibits multi-stability between the preferred orientations.

Another notable feature of these numerical results is
that, despite the limitations of the model, the amount of
switch-beam power, relative to the total pump power, re-
quired to rotate the pattern is of the same order of magni-
tude as what has been observed experimentally. For refer-
ence, Table 2 shows the correspondence between the nor-
malized switch-beam powerPs/Pp used in the simulations
presented above and the experimental values, based on to-
tal pump-beam power ofPp = 560 µW from the experi-
ments in Ref. [17]. As an example, the third curve in Fig. 8
corresponds numerically toPs = 4×10−6Pp. In the work
of Dawes et al., this switch-beam to pump-beam power
ratio would imply a switch-beam power of 1 nW and their

Ps/Pp Ps[nW]
1 × 10−4 26

2.5 × 10−5 6.5
4 × 10−6 1
1 × 10−6 0.26

Table 2 The correspondence betweenPs/Pp and Ps in nW
based on 560µW of total pump power.

switch typically operates between 1 nW and 50 pW. There-
fore, the sensitivity demonstrated in experimental work is
largely described by this model.

There are certainly features of the experiment that
these simulations do not capture. In the first case, ab-
sorption is neglected in assuming a Kerr-type nonlinear-
ity. One consequence of this is that misalignment of the
pump beams in the simulation does not serve to reduce the
number of spots generated. This is in contrast to the experi-
ment, where misaslignment of the pump beams results in a
pair of spots rather than a hexagon. This is likely due to the
fact that, without simulating absorption, there is no loss ex-
perienced by the less-favored hexagonal components and,
even for large pump-beam misalignment, the pattern re-
mains a hexagon. Simulations that include misalignment
of the forward pump beam exhibit hexagonal pattern for-
mation in addition to fluctuations in the pattern orienta-
tion and a near-field pattern flow [50]. Just as for well-
aligned pump beams, the switch beam also causes pattern
rotation when the forward pump beam is misaligned, and
the switch response time diverges near zero switch-beam
power in the misaligned case as well.

Symmetry breaking may be responsible for pinning the
orientation of the pattern. Including pump-beam misalign-
ment in these simulations does appear to have this effect
and is the focus of ongoing work. Refinement of the model
to include absorption and saturation may also improve the
agreement between experiment and simulation. Further-
more, because we have assumed a medium with an instan-
taneous nonlinear response, the only timescale in the Kerr
model is the transit time. This leads to significantly faster
switch response in the model compared to experimental
observations. To quantitatively model the response time
requires a more refined model of the nonlinear interaction
that includes optical pumping effects and the associated
time scales.

Although these initial simulations of pattern-based all-
optical switch exhibits a fast response time, the experi-
mental implementation in atomic vapor is relatively slow,
and hence is a low-bandwidth system. Recent work has
explored the possibility of extending these initial results
by developing semiconductor systems that exhibit nonlin-
ear optical pattern-formation. The final section describes
nonlinear optics in a semiconductor system, and reviews
recent results that demonstrate that such systems are po-
tential candidates for high-bandwidth all-optical devices.
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6. Semiconductor systems

The promising experimental results on pattern switching
in atomic vapor (gaseous) systems have raised the ques-
tion whether similar effects can be expected in solid state
systems, in particular semiconductors. One obvious advan-
tage of semiconductors over atomic systems would be the
fact that they can be more easily integrated in optoelec-
tronic communications networks. Currently, many semi-
conductor devices are based on III-V compounds, such as
GaAs, but beyond that there is a large variety of other
systems, from II-VI compounds to group-III-nitride ma-
terials to zinc oxide materials to silicon structures. Quite
generally, semiconductor systems offer great flexibility in
terms of epitaxial system growth (including active layers
and mirrors), and, of course, they are mechanically robust.

While those application aspects suggest that semicon-
ductors can be useful alternatives to the gaseous systems
described in the previous sections, one needs to realize that
the physics underlying the optical nonlinearities and the
resulting optical instabilities are very different in semicon-
ductors compared to gases. As we will show below, not all
of these differences favor the semiconductor system. From
a general point of view, we note that most semiconductor-
based optoelectronic devices operate at frequencies close
to the fundamental bandgap energy, i.e., they operate either
close to an exciton (the exciton being a bound electron-
hole pair) resonance or even in the band-to-band contin-
uum. In order to achieve optical instabilities, the optical
nonlinearity needs to be sufficiently large. Generally, this
can be achieved by tuning the pump beams close to an opti-
cal resonance and by using sufficiently high intensities. We
have seen in the previous sections that, in the atomic case,
quasi resonant excitation (within the Doppler-broadened
atomic spectral line) and high pump intensities (leading to
significant bleaching of the line) created the optical insta-
bilities. It is then natural to ask whether it is possible to cre-
ate similar instabilities in a semiconductor. Excitation near
the lowest exciton resonance and with sufficiently high
intensity can create similar instabilities. However, under
high excitation, an atomic resonance behaves very differ-
ently from an exciton resonance. In atoms, strong pump-
ing can bleach the resonance and also lead to hole-burning
and ac Stark shifts. In these cases, the nonlinearity can
often be modeled, albeit approximately, by a single pa-
rametern2. This is in sharp contrast to excitons, where
optical excitation creates a complex many-particle system
that fundamentally changes the physics of the transition.
For example, in the lowest-order nonlinear optical regime
(theχ(3)-regime), optical excitation creates, among other
things, two-exciton Coulomb correlations. Depending on
the vectorial polarization state of the optical beams, these
correlations may include bound two-exciton states (biex-
citons). The biexciton resonance and the two-exciton con-
tinuum correlations lead to strong excitation-induced de-
phasing (EID), which is usually much larger than the cor-
responding contribution from PSF (compare Fig. 10b dis-
cussed below). In the language appropriate for semicon-

ductors, the latter is associated with phase-space filling
(PSF) [51]. The fact that in a semiconductor the opti-
cal pump beam creates carriers that lead to increased de-
phasing rates (EID) makes it generally more difficult to
achieve optical instabilities. It therefore makes it necessary
to study the origins of optical nonlinearities and optical in-
stabilities in semiconductors in detail in order to provide
a path toward pattern formation and all-optical switching.
It is necessary to find parameter values and configurations
in which the instability threshold intensity is kept small.
For example, EID has a strong detuning dependence in
the vicinity of the exciton resonance (where by detuning
we mean the difference between the center frequency of
the optical pump field,̄hωp and the exciton resonanceεx,
∆ε = h̄ωp−εx). The problem of EID can be controlled (or
to some degree engineered) with the help of quantum con-
finement and cavity enhancement, as detailed below. Also,
the optical nonlinearities depend critically on the intensity
and vectorial polarization of the pump beam. Depending
on the precise light beam and material parameters (includ-
ing the system’s geometry that may or may not include
cavity mirrors), the nonlinearity can be dominated by PSF
effects, instantaneous Hartree-Fock (HF) Coulomb effects,
and time-retarded two-exciton correlations, to name the
ones that will be discussed in more detail later.

6.1. Excitonic optical nonlinearities

Absorption spectra of non-excited direct-gap semiconduc-
tors exhibit discrete excitonic resonances, typically a few
meV below the fundamental bandgap. Nonlinear processes
involving excitons have been the subject of intensive re-
search for several decades (for recent text book treatments
and reviews see, for example [52–56]). In semiconductor
amplifiers and lasers we do not have discrete excitonic res-
onances, but continuous spectral gain and absorption re-
gions. In the following, we will focus solely on excitonic
resonances, since they have been studied in great detail
and their optical nonlinearities are by now well under-
stood. Furthermore, because of their dominant role in op-
toelectronic device concepts, we will discuss semiconduc-
tor quantum-well systems, i.e., quasi-two dimensional sys-
tems. In thin GaAs quantum wells, the lowest optical tran-
sitions are dominated by heavy-hole excitons. In this case,
the optical dipole selection rules are particularly simple.
Both the heavy-hole valence and the conduction band are
two-fold degenerate, and right circularly polarized light
(denoted by “+”) couples one valence band with one con-
duction band, whereas left-circularly polarized light (de-
noted by “-”) couples the other two bands.

In order to discuss excitonic optical instabilities, it is
advantageous to analyze the equation of motion of the
excitonic interband polarizationp(t) separately from the
Maxwell propagation equation. Similar to the instabili-
ties discussed in Sec. 5.1, one can formulate the nonlin-
ear equation of motion forp(t) in a way that general-
ize the concept of phase-conjugate oscillation (PCO) [49].
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Before describing the optical instabilities, we first discuss
briefly the physical origin of the excitonic nonlinearities.
If a pump beam with frequency close to the lowest exciton
resonance creates many excitons in the system, the con-
stituent electrons and holes interact via the Coulomb in-
teraction, and in addition the Pauli principle yields PSF
effects. We assume here that the intensity of the pump
beam is not too high, so as to avoid exciton ionization and
the formation of an electron-hole plasma. The effects of
the Coulomb interaction are usually divided into (static)
HF interactions and correlation effects. In the lowest-order
(in the light field amplitude) nonlinear regime, and if the
optical excitation contains both circular polarizations “+”
and “-”, the two-exciton correlations contain bound two-
exciton states (biexcitons) as well as two-exciton scatter-
ing continua. If the optical excitation contains only one
circular polarization (either “+” and “-”), the correlations
contain only two-exciton continua. All two-exciton corre-
lations can contribute to EID, as will be shown below. The
equation of motion for the coherent excitonic interband
polarization is [57–60]

ih̄ṗ± = (εx − iγ)p±

−
[

φ∗
1s(0) − 2APSF|p±|2

]

dcvE
± + V HF|p±|2p±

+ 2p±∗

∫ ∞

−∞

d t′G±±(t − t′)p±(t′)p±(t′)

+ p∓∗

∫ ∞

−∞

d t′G±∓(t − t′)p∓(t′)p±(t′) . (10)

Here,εx is the 1s-hh exciton energy,γ a phenomenologi-
cal excitonic dephasing constant,dcv the interband dipole
matrix element andE the light field amplitude at the po-
sition of the QW. Bothp andE depend on time and on
the coordinate vectorr = (x, y) in the plane of the QW.
APSF = 4ax

0

√
2π/7 accounts for excitonic PSF, where the

bulk exciton Bohr radius is denoted byax
0 ≈ 170 Å. The

two-dimensional 1s exciton wavefunctionφ1s(r) is eval-
uated atr = 0. V HF = 2π(1 − 315π2/4096)/ax2

0 Ex
b

(with the exciton binding energyEx
b ≈ 13 meV) is the

HF Coulomb matrix element. Unless otherwise noted, the
time argument ist. The correlation kernelsG are given by
G++ = G−− = G̃+ andG+− = G−+ = G̃+ + G̃−, with
G̃± as defined in Eq. (22) of Ref. [60], including a two-
exciton dephasing rate2γ. In Eq. (10), we have neglected
excitonic correlation of order 3 and higher, since such cor-
relations are usually weak and very difficult to detect [61].

In order to illustrate the physical contents of the var-
ious nonlinear terms in Eq. (10), we Fourier transform
the correlation functions from the time domain to the fre-
quency (Ω) domain and show their frequency dependence
in Figs. 10 and 11. In Fig. 10, we also include the effect
of PSF. The correspondingGPSF follows from the PSF
term in Eq. (10) ifE is expressed in terms of the first-
orderp [59]. In pump-probe configurations (including the
instability analysis discussed in the next subsections), the
real parts of theG’s are proportional to the pump-induced
shift of the exciton resonance, while their imaginary part

is a measure of EID. Consistent with Ref. [59], we call
T ++ = V HF + 2G++ andT +− = 2G+− the T-matrix
in the “++” and “+-” channel, respectively. We see from
Fig. 10a that, in a system in which there is only one cir-
cular polarization, HF yields a blue shift that overcompen-
sates the correlation-induced red shift. PSF yields a shift
that is positive (negative) below (above) the two-exciton
continuum edge (̄hΩ = 2ε(0)). Adding the PSF to the
HF contribution yields a negative slope on the HF blue
shift with zero contribution at the two-exciton continuum
edge. Figure 10b shows that, in the two-exciton contin-
uum (̄hΩ > 2ε(0)), the two-exciton correlations yield
strong EID, whereas the correlation-induced EID becomes
negligible below the two-exciton continuum. Furthermore,
PSF yields a small contribution to EID independent of fre-
quency.
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Figure 10 Exciton-exciton T-matrix in the co-circular polariza-
tion channel withγ = 0.75 meV. Here,ε(0) denotes the 1s-hh
exciton energy. From Ref. [59].

Figure 11a shows that, in the counter circular polar-
ization channel, we have the biexciton resonance below
the two-exciton continuum. Here, the shift has a cross-
over from red to blue. The biexciton resonance also yields
strong EID, as can be seen in Fig. 11b. In these figures, a
relatively large dephasing has been used. For smaller val-
ues ofγ, the spectral region where biexcitonic EID is large
becomes narrower [60].

Knowledge of the frequency dependent excitonic PSF,
HF and correlation effects is crucial for the search of op-

Copyright line will be provided by the publisher



Laser & Photon. Rev.1, No. 1 (2007) 25

-4.0

-2.0

0.0

2.0

4.0

      

R
e(

T
+

−
)/

π
a 02

  
[m

eV
]

(a)
Total

Continuum
Bound Biex.

0.0

2.0

4.0

6.0

8.0

-8.0 -4.0 0.0 4.0 8.0

−
Im

(T
+

−
)/

π
a 02

  
[m

eV
]

Ω−2ε(0)  [meV]

(b)
Total

Continuum
Bound Biex.

Figure 11 Same as Fig. 10, but for the counter-circular polariza-
tion channel. From Ref. [59].

tical instabilities and pattern formation. Using, as general
guidelines, the criteria that a shift towards the pump fre-
quency (which reduces the effective detuning and thus
enhances the action of the pump beam) and small EID
is beneficial for instabilities, we conclude from Figs. 10
and 11 that, in the co-circular channel, pumping above
the two-exciton continuum yields the desired shift but un-
fortunately strong EID, whereas pumping below the two-
exciton continuum avoids EID but unfortunately yields a
HF shift of the exciton resonance away from the light fre-
quency. We will see in Sec. 6.3 that use of a microcav-
ity can yield a way out of this dilemma. This is because
the EID increases with increasing effective mass (here the
mass of the exciton). As we will discuss in more detail
below, a small polariton mass in a microcavity can sub-
stantially reduce EID.

In the counter-circularly polarized channel, Fig. 11a
does not give clear guidelines for possible instabilities,but
one might assume that the region around the biexciton res-
onance may yield the desired sign of the light-induced ex-
citon shift and small EID if the biexcitonic dephasing is
sufficiently small. We will explore this possibility in the
next section.

6.2. Instabilities in single quantum wells

In order to study instabilities in single quantum wells, we
assume the geometry depicted in Fig. 12, with a pump

beam in normal incidence and a probe beam at a small
angle relative to normal incidence. The exciton polariza-
tion is restricted to the quasi-two dimensional plane of
the QW. The polarization component corresponding to
the background-free four-wave mixing direction, denoted
in the following by the subscriptf , travels in the direc-
tion kf = 2kp − ks = −ks, sincekp = 0 (where
all wavevectors are two-dimensional vectors). Hence, the
two-dimensional spatial Fourier decomposition of the ex-
citonic polarization, with Fourier components up to first
order in the grating wavevector, yields

p±(t, r) = p±p (t) + p±s (t)eiksr + p±f (t)e−iksr . (11)

In these systems, counterpropagating beams are not
needed for backward four-wave mixing and instabilities
of the PCO type. One cannot distinguish between forward
four-wave mixing and backward four-wave mixing.

Figure 12 Geometry of the four-wave mixing process in a semi-
conductor quantum well (QW). The in-plane wave vectors of the
interband polarization are indicated, with the pump wavevector
being zero.

Because biexcitonic effects can be assumed to be crit-
ical for optical instabilities [62–65] in single quantum
wells, it is advantageous to re-write Eq. (10) in a way that
allows for a linear stability analysis with full inclusion of
the temporal retardation effects related to biexciton forma-
tion [66]. This can be achieved by separating the contin-
uum part and the bound biexciton part in the correlation
functionG±∓ = G±∓

cont + G±∓
xx and eliminatingG±∓

xx in fa-
vor of an equation of motion for the biexciton amplitude
b(t), yielding new equations of motion

ih̄ṗ± = (εx − iγ)p±

−
[

φ∗
1s(0) − 2APSF|p±|2

]

dcvE
± + V HF|p±|2p±

+ 2p±∗

∫ ∞

−∞

d t′G±±(t − t′)p±(t′)p±(t′)

+ p∓∗

∫ ∞

−∞

d t′G±∓
cont(t − t′)p∓(t′)p±(t′)

+ C∗
xxp±∗b(t) , (12)
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with

ih̄ḃ = (εxx − 2iγ)b +
1

2
Cxxp+p− , (13)

whereCxx is a function of the exciton-exciton interac-
tion and the biexciton wavefunction, and is taken to be
0.54Ex

b ax
0 in the following. The propagation of the optical

field E± across the QW is described with a transfer-matrix
method that accounts for radiative corrections and that as-
sumes the QW to be infinitely thin (see, for example, Eq.
(A5) of Ref. [59]). It is important to note that, in a sin-
gle quantum well, the excitonic polarizations are sources
for light fields via radiative decay, but there is no feedback
of the radiative decay on the incoming light fields. Hence,
the dynamics of the system can be described solely with
the equation for the excitonic polarizations. The situation
will be different in the microcavity (Sec. 6.3), where the
strong interaction between the excitonic polarization and
the cavity mode require a full description of the system
dynamics including the equations forp andE.

Using the Fourier decomposition (Eq. (11)) of Eqs.
(12) and (13), it is straighforward to derive the linear
set of equations of motion forp±s and p±f (fully given
in Ref. [67]) and the nonlinear equation for the pump-
induced interband polarizationp±p , which is independent
of p±s,f . The equations forp±s,f contain self-wave mixing
(SWM) terms,iṗs,f ∼ ps,fp∗pEp and iṗs,f ∼ ps,fp∗ppp,
and cross-wave mixing (XWM) terms,iṗs,f ∼ p∗f,sppEp

andiṗs,f ∼ p∗f,spppp. The XWM terms are necessary for
instabilities and possible pattern formation.

To analyze the possibility of optical instabilities, we
perform a linear stability analysis (LSA). The LSA is done
without an incoming probe field and for a monochromatic
cw pump fieldE±

p (t) = Ẽ±
p e−iωpt and pump polarization

p±p (t) = p̃±p e−iωpt, with ˙̃p±p = ˙̃E±
p = 0 (ωp is the pump

frequency). We evaluate the memory integrals using the
Markov approximation [ps,f (t′) ≈ ps,f (t)eiωp(t−t′)] for
the two-exciton continuum in the correlation kernelsG±±,
G±∓. The term driving the bound biexciton amplitudes
bs,f (t) is proportional top∓p p±s,f +p±p p∓s,f . With the ansatz

ps,f (t) = p̃s,f (t)e−iωpt andbs,f (t) = b̃s,f (t)e−i2ωpt, the
probe and FWM dynamics take the form

d

dt
p̃(t) = M p̃(t), (14)

with p̃(t) =
[

p̃+
s (t), p̃+∗

f (t), p̃−s (t), p̃−∗
f (t), b̃s(t), b̃

∗
f (t)

]T
.

The system is unstable if at least one of the eigenvaluesλi

of M fulfills Re{λi} > 0.
Since atomic nonlinearities are clearly very success-

ful in terms of allowing instabilities, it is instructive to
first evaluate Eq. (14) for the semiconductor quantum well
keeping only the atomic nonlinearities (PSF). For this case,
an analytical evaluation using first-order (in the pump
field amplitude) pump polarizations has been discussed
in Ref. [68]. It was found that instability driven only by
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Figure 13 Linear stability analysis for a linearly polarized pump
for steady-state total coherent exciton densityntotal

x = 1.7 ×
1011cm−2. Shown are the real parts of the eigenvaluesλi of the
matrix M vs. pump detuning. The dotted line in panel (a) sep-
arates the stable (Re{λ} < 0) from the unstable (Re{λ} > 0)
regime. From Ref. [68].

PSF cannot be expected. However, a generalization of the
model, in which spatial dispersion of the exciton frequency
is taken into account (i.e.,εx entering the pump equation
is different from that entering the signal and FWM equa-
tions) allows, at least in principle, for instabilities. This is
shown in Fig. 13. We show the case of no-dispersion as
well as two different in-plane wavevectors of the signal.
Here,kmax is the maximum in-plane vector for the given
frequency. Clearly, we find a region of positive eigenval-
ues (i.e., instabilities) for the case ofks = 0.75kmax, which
indicates that spatial dispersion is indeed beneficial of the
PSF-driven instability.

We stress that Fig. 13 is only a case study, meant to il-
lustrate how PSF could in principle yield near-resonance
instabilities in semiconductor quantum wells. However,
PSF can only yield instabilities at positive detuning, at
which correlation processes yield large EID. In the cal-
culation leading to the result of Fig. 13, we had to use a
very high density in order to obtain instability; a density
where EID would clearly be very large. It is therefore nec-
essary to study the complete system, including PSF, HF,
continuum correlations and biexcitonic correlations. Solv-
ing for this case Eq. (14), we find the instabilities depend
sensitively on the vectorial polarization of the pump beam.
While, in this case, for circularly polarized pump beams,
we find no instabilities, linearly polarized (say “X” polar-
ized) pump beams do yield instabilities, as shown in Fig.
14. We find three different unstable regions (Re{λi} > 0)
caused by the biexcitonic (+−) XWM terms. The labels
XX and XY denote the vectorial polarizations of the pump
(always X) and the unstable modes or probe fluctuations
(either X or Y). We see that a pump beam tuned into the
two-photon resonance with the biexciton allows for a po-
larization instability (the unstable probe is Y polarized),
whereas in the spectral region just below and above the
biexciton resonance we have polarization-preserving in-
stabilities. The XY instability and the XX instability below
the biexciton are single-color instabilities (the imaginary
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parts of the eigenvalues are degenerate in the instability
region), whereas the XX instability above the biexciton is
a two color instability. In the latter, the imaginary parts of
the “unstable” eigenvalues are split, which means that we
have two modes with the same growth rates but different
frequencies.

While the single quantum well instabilities discussed
so far could possibly be used for pattern formation, it needs
to be noted that these instabilities are found to be relatively
fragile. They can be expected only if the dephasing rate is
very small, such as that reported in [69]. In the next sub-
section, we turn our focus on a less fragile instability in a
different semiconductor system.
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Figure 14 Linear stability analysis for a linearly polarized pump
for steady-state total coherent exciton densityntotal

x = 1.6 ×
1010cm−2. Shown are the real parts (a) and imaginary parts (b)
of the eigenvaluesλi of the matrixM for negative pump detun-
ing. Eigenvalues are represented by solid lines for the co-linear
(XX) and by dashed-dotted lines for the cross-linear (XY) polar-
ization configuration. From Ref. [67].

6.3. Pattern switching in semiconductor
microcavities

Figure 15 Sketch of a planar semiconductor quantum well
(QW) microcavity, with distributed Bragg reflector (DBR) mir-
rors and normal-incidence pump beam.

In the following, we consider planar semiconductor
microcavities, which consist of a semiconductor quantum
well and two mirrors (Fig. 15). In high quality cavities,
the exciton-photon coupling is strong enough so that the
eigenmodes of the system become cavity polaritons [70].
The in-plane dispersion of these polaritons is shown in
Fig. 16 along with the dispersions of the uncoupled ex-
citons and photons. The parabolic dispersion of the un-
coupled excitons is not visible in this figures because of
the small wavevector region shown. It is apparent from the
figure that the effective mass of the lower polariton branch
(LPB) is much smaller than that of the uncoupled exciton.
As mentioned above, small mass is related to small EID
[71, 72], and the smallness of EID at the LPB has been a
major factor for their usefulness in providing optical insta-
bilities.

In the past decade, the parametric amplification of po-
laritons (a process usually related to optical instability)
has been the subject of intense experimental and theoreti-
cal research; see, e.g., Refs. [73–78] or the reviews given
in Refs. [79–81]. In a typical pump-probe setup in a co-
circular polarization configuration (with the pump com-
ing in at an angleϑ, unlike the case shown in Fig. 15),
the amplification of a weak probe pulse at normal in-
cidence has mainly been attributed to four-wave mixing
(FWM) processes mediated by the repulsive Coulomb in-
teraction of the exciton constituent of the polaritons ex-
cited on the lower polariton branch (LPB) [72, 75, 76, 78].
For a specific pump in-plane momentum (defining the so-
called “magic angle”), energy and momentum conserva-
tion is best fulfilled for the FWM processes and thus a pro-
nounced angular dependence of this amplification is ob-
served [73, 75]. Because, in the strong coupling regime,
the LPB is spectrally well below the two-exciton scat-
tering continuum, the influence of excitonic correlations
in the scattering processes of polaritons on the LPB is
strongly suppressed (compared to the situation in a single
quantum well without the strong coupling to a confined
photon cavity mode, as discussed in the previous subsec-
tion). However, even for co-circular pump-probe excita-
tion, these correlations must be considered for a complete
understanding of the experimental results [72, 77, 82].

In the following, we review the recent work [23, 83,
84] on optical instability and switching analogous to the
atomic case (Sec. 4). We concentrate on the dynamics in
one spin subsystem (say spin up) by choosing circularly
polarized excitation. We neglect a possible longitudinal-
transverse (TE-TM) cavity-mode splitting [85]. As a fur-
ther simplification, we use the optical dipole selection
rules and matrix elements appropriate in quasi-normal in-
cidence (a complete vectorial formulation of the theory
with selection rules for arbitrary angles can be found, for
example, in [86]). We apply a spatial decomposition of
cavity field and exciton polarization into Fourier compo-
nentsEk andpk, respectively, with in-plane momentumk
[72]. The nonlinear set of coupled equations of motion for
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Figure 16 (a) Sketch of the linear cavity polariton dispersion.
The bare cavity and exciton dispersions are shown, togetherwith
the lower (LPB) and upper (UPB) polariton branches of the cou-
pled cavity-mode exciton system. The fundamental pairwiseoff-
axis scattering of pump polaritons is also indicated. (b) Sketch of
the hexagonal switching geometry in the transverse plane. The
elastic circle is defined by the pump frequency and the dispersion
of the LPB. The basic switching action triggered by the probeis
indicated. The radial bars indicate the variation in the magnitude
of off-axis momentak as included in the nonlinear polariton dy-
namics. From Ref. [23].

Ek andpk reads

ih̄Ėk =h̄ωc
kEk − Ωkpk + ih̄tcE

eff
k,inc , (15)

ih̄ṗk =
(

εx
k − iγ

)

pk − ΩkEk +
∑

qk′k′′

(

2ÃΩk′′p∗qpk′Ek′′

+ VHFp
∗
qpk′pk′′

)

δq,k′+k′′−k . (16)

The cavity-field in Eq. (15) is treated in quasi-mode ap-
proximation [87]. The effective incoming fieldEeff

k,inc driv-
ing the fieldEk in the cavity mode is obtained from a sim-
ple transfer-matrix formalism that includes the radiative
width (Γ = ωh̄2t2c/(ǫ0cnb), with the background refrac-
tive indexnb, the vacuum velocity of lightc and dielec-
tric constantǫ0) of the cavity mode and yields transmit-
ted and reflected field components:Eeff

k,inc = Ek,trans =

Ek,inc − Ek,refl with Ek,refl = −(h̄tc/2nbcε0)Ėk. The
cavity-to-outside coupling constanttc is chosen such that
Γ ≈ 0.4 meV for h̄ω = 1.5 eV. We include excitonic
PSF and HF exciton-exciton Coulomb interaction in the
nonlinear exciton dynamics in Eq. (16); two-exciton cor-
relations are neglected in this study and are expected to
give merely quantitative changes because the pump is, in
what follows, tuned far (severalmeV) below the bare ex-
citon resonance [71, 72] (cf. Fig. 16(a)). Inclusion of two-
exciton Coulomb correlations in our calculations would
basically lead to renormalization ofVHF in Eq. (16) and
give rise to a small additional excitation-induced dephas-
ing [71, 72]. The bare exciton and cavity in-plane disper-
sions are denoted byεx

k (with εx
0 = 1.497 eV) andωc

k, with
h̄ωc

k = εx
0/ cosϑ andsinϑ = |k|c/(ωnb). The dephasing

is γ = 0.4 meV, Ωk = 8 meV is the vacuum Rabi split-
ting, andÃ = APSF/φ∗

1s(0). A spatial anisotropy in the

Figure 17 (a)-(c) Switching in theoutput signals in a reflection
geometry (the signals with out-of-plane momentum opposingthe
incident pump’s are plotted). The intensities per direction are nor-
malized to the incoming control intensity. The switching signal
in (b) is about15 times stronger than the incoming control in (d)
that is triggering this signal (note the different scales onthe ver-
tical axes in panels (a)-(c) and (d)). In panel (b), direction 2 is
shown as the solid line and direction 5 as the dashed line. Similar
switching is observed ina transmission geometry(not shown).
From Ref. [23].

system can be modeled, e.g., by including an anisotropic
cavity dispersionωc

k.
In Fig. 17, we show results where we have numerically

integrated the nonlinear coupled Eqs. (15) and (16) for
quasi steady-state pump excitation in normal incidence.
The pump frequency is tuned5 meV below the bare ex-
citon resonance. The pump (not shown) reaches its peak
intensity Ipump ≈ 19.5 kWcm−2 shortly after0 ps and
is then kept constant. We impose a slight anisotropy in
the cavity dispersion by shiftingωc

k to lower energies by
0.075 meV in directions 1 and 4. Above a certain pump
threshold intensity, phase-matched pairwise scattering of
pump-induced polaritons, driven mainly by the HF term in
Eq. (16), leads to spontaneous (fluctuation-triggered) off-
axis signal formation (similar to [88, 89]). Initially, signals
in all the considered off-axis directions start to grow si-
multaneously. However, as these signals grow over time,
the anisotropy (symmetry breaking) fixes the spontaneous
off-axis pattern at directions 1 and 4. This can be seen in
Fig. 17(a)-(c) for times less than2 ns. After 2 ns, we apply
a weak probe (Iprobe ≈ 0.1 Wcm−2) with the same fre-
quency as the pump frequency in direction 2 (Fig. 17(d)).
Now, the strong off-axis emission switches to directions
2 and 5 and vanishes in the “preferred” directions 1 and
4. Note that the switching signal in directions 2 and 5 is
about 15 times stronger than the probe pulse itself (i.e.,
part of the pump is redirected from normal incidence to
the directions 2 and 5). In other words, the gain in direc-
tion 2 is≈ 11.7 dB. When switching off the weak probe

Copyright line will be provided by the publisher
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at ≈ 5 ns, the strong off-axis emission switches back to
the preferred directions 1 and 4. The switching can then be
repeated as shown in the figure. On/off switching times in
our study are≈ 1 ns (corresponding to switching brought
about by≈ 13 photons if a beam waist of2 µm diame-
ter is assumed). Even though no systematic study into the
lower limit of the switching times has been undertaken, the
results imply that the bandwidth limitation (due to slow
switching times) encountered in the atomic system may be
significantly improved in semiconductor microcavities.

Since the pump excitation is off-resonant, a relatively
strong pump is required to reach the instability threshold.
In an experimental setup, unintended off-axis scattering of
pump light could reduce the contrast ratio between “on”
and “off” states and thus the performance of the switch.
However, this practical issue might be alleviated using
another existing microcavity design [90] where resonant
pump excitation could be used. We have estimated that a
reduction of the threshold intensity by two orders of mag-
nitude could be expected [23].

A related study of all optical pattern switching has
been given in Ref. [22]. There, a comprehensive numerical
analysis of pattern formation and switching in semicon-
ductor microcavities is presented. It has been found that
patterns can be controlled with beams that have 100 times
smaller intensities than the intensity of the pattern, with
switching times comparable to the ones shown in Fig. 17.
The nonlinearity used in [22] is restricted to PSF due to
the presence of incoherent carriers, and the evaluation fo-
cuses on the positive detuning case. As discussed above,
at positive detuning strong EID from correlations may be
expected to hinder instability, although further investiga-
tions of EID from incoherent carriers are needed to ver-
ify this hypothesis. At any rate, the investigation in [22]
supports our belief that semiconductor microcavities may
be the most promising semiconductor system for future
demonstrations of transverse optical pattern switching at
low light levels. Experiments on stimulated polariton scat-
tering in microcavities have shown an impressive trend to-
wards higher operational temperatures [77, 90].

In addition to microcavities, other systems may also
be candidates for instabilities and switching. For example,
instabilities in the co-circular polarization channel canbe
expected in Bragg-spaced quantum wells [91], which are a
specific realization of one-dimensional resonant photonic
bandgap structures), because, in these systems, a suppres-
sion of EID as a consequence of the strong coupling be-
tween the quantum wells and the light field (similar to the
case of semiconductor microcavities discussed above) is
beneficial for optical instabilities.

We end the discussion of semiconductor systems by
noting that, for all these systems, a substantial amount
of further research is needed to experimentally verify the
predicted optical switching phenomena and, once that is
achieved, to make their performance characteristics com-
patible with the requirements of real devices.

7. Future directions

The initial results demonstrating optical patterns as a
mechanism for all-optical switching have led to further re-
search in both atomic vapor and semiconductor systems.
There are many potential directions for future research.
One immediate step forward is to extend the present nu-
merical model described in Sec. 5 to allow for pump-
beam misalignment. This work is presently underway
and demonstrates that the symmetry breaking introduced
in this way does contribute to the overall sensitivity of
the switch. Additionally, improved quantitative agreement
with the experimental results from the vapor system may
be obtained by using an improved numerical model that
takes into account the optical-pumping nonlinearity.

Experimental verification of the switching phenomena
in semiconductor systems is required to confirm the cur-
rent predictions. Furthermore, such devices must then be
optimized for specific applications. As this review sug-
gests, pattern-based all-optical switches can be imple-
mented in a variety of systems. Some, such as atomic va-
por, may be ideal for ultra-low-light applications, while
others, such as semiconductor systems, may be ideal for
high-bandwidth applications.
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